
Diagonalisation of corner transfer matrix by orthogonal polynomials

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1988 J. Phys. A: Math. Gen. 21 L1029

(http://iopscience.iop.org/0305-4470/21/21/006)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 31/05/2010 at 15:30

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/21/21
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J .  Phys. A: Math. Gen. 21 (1988) L1029-L1032. Printed in the UK 

LETTER TO THE EDITOR 

Diagonalisation of corner transfer matrix by orthogonal 
polynomials 

T T Truong and I Peschel 
Fachbereich Physik, Freie Universitat Berlin, Arnimallee 14, D-1000 Berlin 33, Federal 
Republic of Germany 

Received 1 August 1988 

Abstract. We discuss the generator of Baxter's corner transfer matrix for a critical Ising 
model of finite size. We perform its diagonalisation in terms of special orthogonal poly- 
nomials and give an asymptotic expression of the eigenvalues for large size, which agrees 
with the conformal predictions. 

In the study of exactly solvable models in two-dimensional statistical mechanics the 
corner transfer matrix (CTM) turns out to be a powerful tool [ l ,  21. This is mainly due 
to its surprisingly simple eigenvalue spectrum. Denoting the CTM by d it was found 
that, for an infinite system, the low-lying eigenvalues of l n d  are equidistant at all 
temperatures. At the critical point the level splitting vanishes and then the spectrum 
of a finite system is of interest. This has been discussed using conformal invariance 
[3]. For an isotropic Ising model defined on an area with the shape of an annular 
sector, the level splitting was found to be 

where R and a are the outer and inner radii of the annular sector and 8 its opening 
angle. In this continuum limit, In d is also proportional to the element Lo of the 
Virasoro algebra [4,5]. 

The result (1) has already been tested numerically on a lattice, where Rla is to be 
replaced by N, the number of spins along an edge [6]. In the present letter we treat 
the problem analytically. To this end we study the XY-spin chain: 

N-I x=; c n(a;a;+l+ay,aY,+,) 
n = l  

where the a:' are Pauli matrices. This operator is related to the CTM of two inter- 
penetrating Ising lattices shown in figure 1. If the systems are strongly anisotropic 
(K2" 1, K1 >> 1) and one uses dual variables (i.e. the arrow or vertex representation 
[l]), the relation is d = exp(-ZKTX) with tanh KT = exp(-2K1). Baxter has shown 
that the relation In d - X even holds for arbitrary anisotropy [ 1,2], and therefore X 
is the typical operator to study. Note that we have chosen fixed (resp free) boundary 
conditions for the two sublattices and a particular shape of the outer boundary. 
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Figure 1. Geometry of the two interpenetrating Ising lattices which lead to the corner 
transfer matrix considered in the text. The system shown corresponds to N = 6 .  The 
couplings are also indicated. 

In terms of fermions, X becomes a hopping model with linearly increasing hopping 
rates 

A related operator with constant rates but on-site terms nc:cn has been studied by 
Smith [7]. X can be diagonalised by forming linear combinations Xn$Hcn. The 
coefficients $,, satisfy the recursion relation 

( n - 1 ) $ n - l ( A ) + n $ n + l ( A ) = A $ n ( h )  n = 1 , 2 , .  . . (4) 
together with ~ , h ~ + ~ ( h )  = 0, which selects the single-fermion eigenvalues A = A, for a 
finite chain of N sites. To obtain the $, explicitly, we introduce the generating function: 

which in view of (4) obeys a simple first-order differential equation in t .  Integrating 
this equation with the assumption $ , ( A )  = 1 gives 

1 
G(t, A )  = exp(A tan-' t ) .  

( I + ? )  
Then +hn(A)  follows from Cauchy's theorem 

$,,(A) =- t-"G(t, A )  dt. (7) 2i ' f  T 

One now inserts ( 6 ) ,  substitutes t =tan v and deforms the contour into a rectangle 
with vertical lines at v = * ~ / 2 .  To make contact with standard notations [8] one 
defines I , ~ ~ + ~ ( A )  = M,(A) /n!  Then M n ( A )  is given by 

n !  * tanh"(y) 
exp(iyA) dy. (8) coshy M n ( A )  =-cosh(~A/2)  exp(-in7~/2) 

7T 

The & ( A )  are called Meixner polynomials of the second kind [8,9]. The integral 
representation (8) differs from a related one given by Hardy [lo]. The first M n ( A )  are 

Mo(A)  = 1 M,(A)  = A M,(A) = A'- 1 
(9) 

M,(A)=A3-5A M4(A) = A 4 -  14A2+9. 
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A general formula for even n = 2p follows from the Fourier transform of cosh-‘”+’’(y) 
[ 111: 

p ( - 1 ! 4 q  Mzp ( A ) = ( - 1)’ - (2p)! f ( ) [A2+(2m+1)2]. 
7~ q = O  (2q)! m = l  

Some other properties of the polynomials M,,(A) are as follows. 
(i)  The operator J ( A )  = tan(d/dA) shifts the index according to 

J ( A ) M , ( A )  = nM,-,(A). (11) 
In the classification of Sheffer [12] the M,(A) thus belong to the A-type zero class. 

(ii) Partial integration in (8) gives a Rodrigues-type formula: 

n !  7T 

7T ( 2 cosh( 7rA/2) 
M,(A)=-COS~(TA/~)  J ” ( A )  

(iii) Combining the recursion relation (4) with (11) one obtains the differential 
equation: 

[ ( n  - 1)J2(A) - A J ( A )  + n]M,(A) = 0. (13) 
(iv) The orthogonality among polynomials is [ 101 

For our problem we are mainly interested in the zeros of the M,,(A) which give 
the eigenvalues A, for the finite-N case. For each A,, ( - A y )  is also an eigenvalue. 
The spectrum differs for even and odd N ;  in the latter case it contains A = 0. In the 
following we confine ourselves to even N. Physically, this corresponds to fixed boun- 
dary conditions for one sublattice and free ones for the other sublattice, as shown in 
figure 1. Then with new fermion operators a,  and py where 

(where Nu is the appropriate normalisation factor) and py is the corresponding hole 
operator for A,, < 0, X can be written as 

X= 1 AV(a:a, +p:P,)+constant (15) 
Y 

so that the ground state of X is the vacuum of the new fermions av, p y .  The two 
(equivalent) sublattices are reflected in the two types of operators. We observe that 
the canonical transformation to the new fermions is, for N + m ,  a critical limit (i.e. 
k - ,  1) of the transformation given by Thacker and Itoyama [13]. 

A general formula for the A, does not seem to exist. However, one can find an 
expression for small A, and N +  00 from (8). In this case the main contribution to the 
integral comes from the maximum of tanhN(y)/cosh(y) which is located at y = ln(4N) 
and where the width of the peak is of order one. For In N >> 1, one obtains 

(16) 

This is exactly the result predicted using conformal arguments for the present 
anisotropic limit [3]. In numerical calculations [3,6] the condition In N >> 1 normally 
cannot be reached and one has corrections which change In N into ln(pN).  
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The same approach can, of course, be used for a homogeneous spin chain which 
is related to the usual row-to-row transfer matrix. Then one encounters the Tchebyscheff 
polynomials, the zeros of which can be found analytically. The CTM studied in [ 6 ]  is 
an intermediate case and corresponds to restricting n in ( 1 )  to M s n s N. The 
polynomials in this case seem to be more complicated, although it is easier to study 
the problem numerically. Finally, we mention that the present finite-size approach 
using orthogonal polynomials can also be applied to Ising systems away from the 
critical point. One then has to study an anisotropic XY-spin chain with linearly 
increasing couplings. This will be treated in a separate publication. 
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